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Abstract. We prove the upper semicontinuity (in term of the closedness) of the solution set
with respect to parameters of vector quasivariational inequalities involving multifunctions
in topological vector spaces under the semicontinuity of the data, avoiding monotonicity
assumptions. In particular, a new quasivariational inequality problem is proposed. Applica-
tions to quasi-complementarity problems are considered.
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1. Introduction and Preliminaries

In the theory of variational inequalities, solution sensitivity is one of the
subjects that have been most intensively studied.

Many authors used the projection method to study the continuity
or Lipschitz continuity of the solution set of variational inequalities in
Euclidean spaces or Hilbert spaces, e.g. Dafermos (1988), Mukherjee and
Verma (1992), Noor (1992) and Yen (1995). Robinson (1995) used the so-
called normal mappings and an implicit function approach to deal with the
solution sensitivity of variational inequalities satisfying some smoothness
assumptions.

Noor (1997), Domokos (1999), Ding and Luo (1999) and Kassay and
Kolumban (2000) considered the continuity or Lipschitz continuity of the
solution set of variational or quasivariational inequality problems in infi-
nite dimensional settings. Levy (1999) analyzed the protodifferentiability
of the solution mapping to a parameterized variational inequality with
constraint sets being polyhedral in reflexive Banach spaces and computed
the protoderivative of this mapping. [Note that this generalized derivative
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is a special kind of the contingent derivative of a multifunction, see e.g.
Rockafellar and Wets (1998)].

To our knowledge all the works mentioned above and the majority of
the papers in the literature examined the continuity, Lipschitz continuity
of differentiability of solution mappings. Observe that to obtain a desired
continuity of solution mapping the authors assumed the continuity of the
same kind for the data in the variational inequality problem. Such assump-
tions may be too severe in practice. However, in many practical cases semi-
continuity of the solution mappings may be sufficient. For instance, in the
Walras–Ward model and the Arrow-Debreu–Mckenzie model of a competi-
tive economy, an equilibrium for the economy exists provided only the upper
semicontinuity with respect to the vector of good prices p of the set Y (p) of
the output vectors and of the set W(p) of the factor prices, see e.g. Lancaster
(1968). The sets Y (p) and W(p) in turn are the optimal solution sets of a
pair of linear programming problems, which are dual to each other.

These observations have motivated our study of the upper semicontinuity
of solutions of a vector quasivariational inequality problem involving mul-
tifunctions. We observe that rather few papers in the literature have dealt
with this upper semicontinuity. Muu (1984) considered a scalar general var-
iational inequality problem in the form of an equilibrium problem in a
reflexive Banach space and proved the upper semicontinuity of the solu-
tion mapping in the weak topology, basing on semicontinuity, hemiconti-
nuity and monotonicity of the mapping of the problem and employing a
maximum theorem [in Berge (1968)] about the lower semicontinuity of the
optimal value of a maximization problem.

Gwinner (1995) and Lignola and Morgan (1999) established certain kinds
of convergence for solutions to perturbed variational inequality problems.

After submitting the previous version of this paper we observed the
recent papers Chen and Zhu (2004) and Li et al. (2002) on a very relevant
subject. Li et al. (2002) proved the upper semicontinuity of a kind of solu-
tion mappings of multivalued vector quasivariational inequalities in Banach
spaces (with the objective space being finite dimensional). Chen and Zhu
(2004) considered both upper and lower semicontinuity of the solution set
of single-valued vector variational inequalities in finite dimensional spaces.
Since our aim is almost the same, we will compare the results in details in
Remarks 2.2 and 2.3 followed by several examples.

It should be noted that most of the mentioned works dealt with sin-
gle-valued scalar variational inequalities. The vector case is considered
only in Chen and Zhu (2004), Fu (2000), Giannessi (2000), Khanh and
Luu (2004a, b). Multivalued problems are investigated in Chadli et al.
(2000), Cubiotti (2002), Ding (1992), Kassay and Kolumban (2000) and
Yao (1994). Quasivariational inequalities are dealt with only in Cubiotti
(2002) and Ding and Luo (1999).
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The problem under our consideration is as follows. Let X and Y be
Hausdorff topological vector spaces, U be a Hausdorff topological one and
A ⊂ X be a nonempty closed and convex subset. Let C: A−→→2Y , T : U ×
A−→→2L(X,Y ) and K: U × A−→→2X, be multifunctions, the values of C being
closed and convex cones with nonempty interiors, where L(X,Y ) stands for
the space of all continuous linear mappings of X into Y . Let g :U ×A−→→A

be a continuous (single-valued) mapping. Consider the two problems of, for
u∈U ,

(PQV Iu): finding x̄ ∈A∩clK(u, x̄) such that ∀x ∈K(u, x̄),∃t̄ ∈T (u, x̄),

(t̄ , x −g(u, x̄))∈Y\− intC(x̄);

(PSQV Iu): finding x̄ ∈ A ∩ clK(u, x̄) such that ∀x ∈ K(u, x̄),∀t ∈
T (u, x̄),

(t, x −g(u, x̄))∈Y\− intC(x̄),

where int(.) means the interior, cl(.) means the closure and (ζ, x) stands for
the value of linear mapping ζ at x. We use the notations.

S(u) :={x ∈A: x is a solution of (PQV Iu)},
S1(u) :={x ∈A: x is a solution of (PSQV Iu)}.

To the best of our knowledge, problem (PSQV Iu), even in the simplest
case without parameters and when K(x)≡K,g(x)≡x,C(x)≡C and X=Rn

was not examined, except in Khanh and Luu, (2004a, b). The existence of
solutions and related issues for the case without parameters of (PQV Iu)

were developed in the works by Giannessi, Maugeri, De Luca, Cubiotti,
Fu and Ricceri, published in the books edited by Giannessi and Maugeri
(1995), Di Pillo and Giannessi (1996) and Giannessi (2000).

Recall that F : X−→→2Y is said to be upper semicontinuous (usc) at x0 ∈
domF :={x ∈X:F(x) �= ∅} if for each neighborhood N of F(x), there is a
neighborhood M of x such that F(M)⊂N . F is called usc in a set V , if
it is usc at every x ∈V . If V =domF , we simply say F is usc. F is termed
closed at x ∈domF , if ∀xγ ∈domF :xγ →x,∀yγ ∈F(xγ ):yγ →y, y ∈F(x). F

is called closed, if graph F :={(x, y)∈X ×Y :y ∈F(x)} is closed, i.e., from
(xα, yα) ∈ graphF , (xα, yα) → (x, y), it follows that (x, y) ∈ graphF . Upper
semicontinuity and closedness are closely related as shown in the following
result

PROPOSITION 1.1. [see e.g. Konnov (2001), Proposition 2.1.1 and (Aubin
and Frankowska 1990), Proposition 1.4.8].
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(a) If F :X →2Y has closed values and is usc than F is closed;
(b) If F(A) is compact for any compact subset A of domF and if F is

closed, then F is usc;
(c) If Y is compact and F is closed then F is usc.

Recall further that F :X−→→2Y is said to be lower semicontinuous (lsc) at
x ∈domF , if ∀y ∈F(x),∀xα ∈domF :xα →x,∃yα ∈F(xα), yα →y.

2. The Closedness of S(.) and S1(.)

Since the closedness and the upper semicontinuity of a multifunction are
closely related, for convenience, the study in this section is carried out in
term of the closedness of the solution sets. Let U0 ⊂U be an open subset
and u0 ∈ U0. We assume that, for each u ∈ U0, S(u) �= ∅, and S1(u) �= ∅. In
Example 2.1 below we will show how to check this condition.

THEOREM 2.1. Assume

(i) K(.,.) is lsc in (u0,A) and clK(.,.)is usc in (u0,A);
(ii) ∀uα → u0,∀xα → x0,∀yα → y0,∀tα ∈ T (uα, xα),∃tβ(subnet),

∃t0 ∈T (u0, x0), such that (tβ, yβ)→ (t0, y0);
(iii) Y\−intC(.) is a closed multifunction.

Then S(.) is closed at u0.

Proof. Consider arbitrary nets uα → u0, xα ∈ S(uα), xα → x0. Suppose
x0 �∈clK(u0, x0), i.e., there is a neighborhood N(x0) and a neighborhood V

of clK(u0, x0) such that

N(x0)∩V =∅. (1)

Since clK(.,.) is usc at (u0, x0), without loss of generality we can assume
that xα ∈ clK(uα, xα)⊂V and xα ∈N(x0) for every α, contradicting (1). So
x0 ∈clK(u0, x0). Again suppose to the contrary that x0 �∈S(u0), i.e., there is
y0 ∈K(u0, x0) such that

(T (u0, x0), y0 −g(u0, x0))⊂−intC(x0). (2)

By the lower semicontinuity of K(. , .) at (u0, x0), there exists yα ∈K(uα, xα),

yα →y0. As xα ∈S(uα), there is tα ∈T (uα, xα) such that

(tα, yα −g(uα, xα))∈Y\− intC(xα). (3)

By virtue of (ii), there are t0 ∈T (u0, x0) and a subnet tβ such that

(tβ, yβ −g(uβ, xβ))→ (t0, y0 −g(u0, x0)).



UPPER SEMICONTINUITY OF THE SOLUTION 573

Now by (iii) we must have (t0, y0 − g(u0, x0))∈Y\− intC(x0), a contradic-
tion with (2). Consequently, x0 ∈S(u0) and then S(.) is closed at u0.

REMARK 2.1. Even in the special case where X and Y are normed
spaces, assumption (ii) is weaker than ‘∀un →u0,∀xn →x0,∀tn ∈T (un, xn)∃tnk

(subsequence), ∃t0 ∈T (u0, x0) such that tnk
→ t0’. Indeed, take xn ∈R,xn ≡0

and tn ∈R arbitrarily then xn →x0, tnxn → t0x0, but tn needs not to converge.
In the case where X and Y are topological vector spaces, it is not conve-
nient to define a topology in L(X,Y ).

THEOREM 2.2. Assume (i) and (iii) as in Theorem 2.1 and instead of
(ii)assume

(ii’) the multifunction T(.,.)is usc in (u0,A) and T (u0, .) has compact
values.
Then, S(.) is closed at u0.

Proof. Consider arbitrary nets uα →u0, xα ∈S(uα), xα → x0. Similarly as
above, x0 ∈ clK(u0, x0). Suppose to the contrary that x0 �∈ S(u0), i.e., there
is y0 ∈ K(u0, x0) satisfying (2). Since K(.,.) is lsc at (u0, x0), one has yα ∈
K(uα, xα) such that yα → y0. Since xα ∈ S(uα),∃tα ∈ T (uα, xα) such that (3)
holds. By the (ii’) there are a subnet tβ and t0 ∈ T (u0, x0) such that tβ →
t0. Thus (tβ, yβ − g(uβ, xβ)) → (t0, y0 − g(u0, x0)). Assumption (iii) and (3)
together imply that (t0, y0 − g(u0, x0))∈Y\− intC(x0), which is impossible,
due to (2). So, x0 ∈S(u0).

Passing to (PSQV Iu) we have

THEOREM 2.3. Assume (i) and (iii) as in Theorem 2.1 and instead of (ii)
assume

(ii”) the multifunction (T(.,.),.) is lsc in (u0,A,A).
Then, S1(.) is closed at u0.

Proof. Consider arbitrary nets uα →u0, xα ∈S1(uα), xα →x0. Similarly as
above, x0 ∈ clK(u0, x0). Suppose to the contrary that x0 �∈S1(u0), i.e., ∃y0 ∈
K(x0, u0),∃t0 ∈T (u0, x0),

(t0, y0 −g(u0, x0))∈−intC(x0). (4)

Since K(.,.) is lsc at (u0, x0), one has yα ∈K(uα, xα) such that yα →y0. Since
(T (., .), .) is lsc at (u0, x0, y0), there is a net tα ∈T (uα, xα) such that

(tα, yα −g(uα, xα))→ (t0, y0 −g(u0, x0)).

One has (tα, yα − g(uα, xα)) ∈ Y\ − intC(xα), for xα ∈ S1(uα). Since
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Y\− intC(.) is closed,

(t0, y0 −g(u0, x0))∈Y\− intC(x0),

which is impossible due to (4). So x0 ∈ S1(u0), and then S1(.) is closed at
u0.

EXAMPLE 2.1. Consider (PQV Iu) with X =Y =U =R,A= [0,1],C(x)≡
R+, g(u, x)≡x and, ∀u∈U ,

K(u, x)=
[

0,
u+x

2

)
, x ∈ [0,1],

T (u, x)=




R if x =0, or x =1,

[−u,u] if x ∈ (
0, 1

2

]
,

{u2 +x2} if x ∈ ( 1
2 ,1

)
.

To study the solution sensitivity of this problem, the theorems of Berge
(1968) and Li et al. (2002) are not applicable. (All the other sensitivity
results known to us cannot be used as we are faced with a quasivariational
inequality). Now we apply Theorem 2.1 for an arbitrary u0 in U0, say U0 =
(0,1). Assumptions (i) and (iii) are clearly satisfied. To check (ii) take arbi-
trarily convergent sequences un → u0, xn → x0, xn �= x0, yn → y0 and points
tn ∈T (un, xn). If 0<x0 � 1

2 and 0<xn � 1
2 , then tn ∈ [−un, un]⊂ [−u0 −δ, u0 +

δ], with a fixed δ for sufficiently large n. Hence, there are t0 ∈ [−u0, u0] and
subsequence tnk

→ t0. Therefore, tnk
ynk

→ t0y0. If xn > 1
2 for every n, then

tn = u2
n + x2

n → u2
0 + x2

0 =: t0 and again tnyn → t0y0. If 1
2 < x0 < 1, then (for

large n) T (un, xn)={u2
n + x2

n} and, as above, (ii) is fulfilled. If x0 = 0, since
xn �=x0, the situation is similar to the case where 0<x0 � 1

2 ,0<xn � 1
2 , while

if x0 = 1, the argument is similar to that for the case where 1
2 <x0 < 1. So

(ii) is satisfied and S(.) is closed. Since A = [0,1] is compact, by Proposi-
tion 1.1 (c), S(.) is also usc. Note that Theorem 2.2 cannot be applied since
T (u0,0) and T (u0,1) are not compact.

Using Theorem 2.1 of Khanh and Luu (2004a ,b) we can show that
S(u) �=∅,∀u∈U0 = (0,1).

EXAMPLE 2.2. Consider (PSQV Iu) with X,Y,A,C(x), g(u, x) and
K(u, x) as in Example 2.1, and, for each u∈U := (0,1),

T (u, x)=
{ (

u, 2
u

)
if x ∈ [

0, 1
2

)
,{

u+x2
}

if x ∈ [ 1
2 ,1

]
.
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We consider any point u0 ∈ (0,1).
Then, all assumptions of Theorem 2.3 are clearly fulfilled. Thus, S1(.) is

closed at u0. Note that all assumption of Theorem 2.2 in Khanh and Luu
(2004a ,b) are also satisfied ∀u∈U . So S1(u) �=∅,∀u∈U .

REMARK 2.2. When applied to the special case of our problems (PQV Iu)

and (PSQV Iu), which is considered in Chen and Zhu (2004), Theorems
2.1–2.3 have weaker assumptions than that of Theorem 2.1 in Chen and
Zhu (2004), since the values of K(.,.) are allowed to be nonconvex and non-
compact, K(.,.) needs not to be uniformly compact near u0 and T (·, u0)

needs not to be pseudomonotone.

REMARK 2.3. Unlike the single-valued case, for the multivalued quasi-
variational inequalities, three problems arise naturally. Beside (PQV Iu) and
(PSQV Iu), the third problem is

(Pu): finding x̄ ∈A∩ clK(u, x̄) such that ∃t̄ ∈T (u, x̄),∀x ∈K(u, x̄),

(t̄ , x −g(u, x̄))∈Y\− intC(x̄);

The solution existence of this problem was considered (for variational
or quasivariational inequalities with a variety of settings) e.g. in Chadli
et al. (2000), Cubiotti (2002), Ding (1992) and Yao (1994). The continu-
ity of the solution mapping was analyzed in Ding and Luo (1999). Denot-
ing

I ∗(u) :={x ∈A : x is a solution of (Pu)},

one clearly has

S1(u)⊂ I ∗(u)⊂S(u). (5)

In Li et al. (2002), the following extraordinary solution multifunction was
proved to be closed

I (u) :={x̄ ∈A :∃t̄ ∈T (u, x̄), ∀x ∈K(u, x̄),

(t̄ , x −g(u, x̄))∈Y \−intC(x̄)}.

Note that the difference of I (u) from I ∗(u) is that x̄ ∈ A, not x̄ ∈ A ∩
clK(u, x̄) and that I ∗(u) ⊂ I (u). [In fact the notation I (u) in Li et al.
(2002) is for the set of (x̄, t̄) in the product space].

The following example shows that the inclusions in (5) may be proper
and the closedness of the three multifunctions may be different.
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EXAMPLE 2.3. Let X,Y,A,U,C(x) and g(u, x) be as Example 2.1. For
all u∈U , let K(u, x)= [1,0] and

T (u, x)=




{1} if x =0 or x = 1
2 ,

{−1,1} if x = n−1
2n

, n=2,3, . . . or x =1,

{−1} otherwise.

Then, it is not hard to see that S1(u)={0}, I ∗(u)={0,1} and S(u)={0,1}∪
{n−1

2n
: n = 2,3, . . . }. So, S1(.) and I ∗(.) are closed but S(.) is not closed.

Moreover, one can check directly that assumption (ii) of Theorem 2.1 and
(ii′) of Theorem 2.2 are not satisfied, respectively. However, assumption (ii′′)
is also violated. But S1(.) is closed. So, Theorem 2.3 gives a sufficient con-
dition, which is not necessary.

EXAMPLE 2.4. Let all the data be as in Example 2.3, except T (u, x)

which is defined by

T (u, x)=
{ {−1,1} if x = 1

2 ,

{0} otherwise.

Then, S1(u)= I ∗(u)= [0,1]\{ 1
2

}
and S(u)= [0,1]. Hence, S(.) is closed, but

S1(.) and I ∗(.) are not closed.
The following example clarifies that I ∗(.) may be properly included in

I (u).

EXAMPLE 2.5. Let X,Y,A,U,C(x) and g(u, x) be as in Example 2.1.
For all u ∈ U , let K(u, x) = [0, x+u

4 ] and T (u, x) = {−1,1}. Then, I ∗(u) =
{0}∪{

u
3

}
and I (u)={0}∪ [ u

3 ,1].
The assumptions of Theorem 3.2, in Li et al. (2002) are similar to

that of our Theorem 2.2 but clK(.,.) needs not to be usc, since the ele-
ments x̄ of I (u) need not to belong to clK(u, x̄). The example below high-
lights that this upper semicontinuity is crucial for our three theorems to
hold.

EXAMPLE 2.6. Let X,Y,A,U,C(x) and g(u, x) be as in Example 2.1.
For all (u, x)∈U ×A, let

K(u, x)=
{ {0} if u=0,[

0, 1
2 + x+u

4

]
otherwise,

T (u, x)={−1,1}.

Then, clK(.,.) is not usc in (u0,A). By direct computation one has
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S(u)=
{ {0} if u=0,[

0, 2+u
3

]
otherwise,

S1(u)=
{ {0} if u=0,

∅ otherwise.

3. Applications to Quasi-complementarity Problems

Let X,U,A,T and K be as in the definition of problem (PSQV Iu). As for
the other data of the problem we restrict ourselves to the special case Y =
R,C(x)≡x and g(u, x)=x,∀u∈U , Let H :U ×A−→→2X be a multifunction.
We define a quasi-complementarity problem with parameters as follows, for
u∈U ,

(PQCu): find x̄ ∈A such that ∀h̄∈A∩H(u, x̄),∀t ∈ (−A0)∩T (u, x̄),

〈t, h̄〉=0.

Here, for A⊂X, the polar set A0 is defined by

A0 :={f ∈X∗: 〈f, a〉�1, ∀a ∈A}.

If A is a cone, then it is clear that A0 coincides with the negative conjugate cone

−A∗ ={f ∈X∗: 〈f, a〉�0,∀a ∈A}.

If H(u, x) ≡ A and T (u, x) = t (x) begin a single-valued mapping, then
(PQCu) reduces to the complementarity problem introduced by Karamar-
dian (1971) and has been intensively investigated. Another
quasi-complementarity problem involving multifunctions was introduced in
Fu (2000) with ∀h̄,∀t in (PQCu) replaced by ∃h̄,∃t . In Cubiotti (2002) a
quasi-complementarity problem with single-valued mappings was studied.
Complementarity problems are closely related to variational inequalties due
to the following

LEMMA 3.1 [Karamardian (1971)]. Let X be a Hausdorff topological vec-
tor space and A ⊂ X be a closed and convex cone. Then x̄ ∈ A, t̄ ∈ X∗ and
〈t̄ , x − x̄〉�0, ∀x ∈A if and only if x̄ ∈A, t̄ ∈A∗ and 〈t̄ , x̄〉=0.

Let T ′ be the multifunction defined by T ′(u, x) = (−A0) ∩ T (u, x) and
(PSQV I ′

u) be (PSQV Iu) with T replaced by T ′.

THEOREM 3.2. (i) Let the multifunction K in (PSQV I ′
u) and H in

(PQCu) satisfy the relation, ∀(u, x)∈U ×A,
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K(u, x)=x −A∩H(u, x)+A (6)

and A be a closed and convex cone. Then x̄ is a solution of (PSQV I ′
u)

if and only if x̄ is a solution of (PQCu).
(ii) If, beside the assumptions in (i),H(.,.) has closed values and is continu-

ous in (u0,A) and (T (. , .), .) is wlsc in (u0,A,A), then the solution mul-
tifunction W(.) defined by

W(u) :={x ∈A:x is a solution of (PQCu)}

is closed at u0.

Proof. (i) Assume that x̄ is a solution of (PQCu), Then ∀x ∈K(u, x̄),∃h̄∈
A ∩ H(u, x̄),∃a ∈ A,x = x̄ − h̄ + a. Hence, taking Lemma 3.1 into account
we have, ∀t ∈A∗ ∩ T (u, x̄), 〈t, x − x̄〉= 〈t, a − h̄〉 � 0, i.e., x̄ is a solution of
(PSQV I ′

u).
Conversely, assume that x̄ is a solution of (PSQV I ′

u). Since ∀h̄ ∈ A ∩
H(u, x̄),∀a ∈A,x : x̄ − h̄+a ∈K(u, x̄), one has, for each t ∈T ′(u, x̄),

0� 〈t, (x̄ − h̄+a)− x̄〉=〈t, a − h̄〉.

Invoking to Lemma 3.1 one gets 〈t, h̄〉=0, i.e., x̄ ∈W(u).
(ii) Clearly all assumptions of Theorem 2.3 are fulfilled and then this the-

orem together with (i) establish the closedness of W(.) at uo.

Note that, for a given K(.,.), the multifunction H (.,.) satisfying (6)
is not unique, i.e., we have a family of (PQCu) corresponding to a
given (PSQV I ′

u). However, according to Theorem 3.2 (i), all the prob-
lems of the family have a common solution set being the solutions set of
(PSQV I ′

u).

4. Conclusions

Parametric multivalued vector quasivariational inequalities have been con-
sidered in Hausdorff topological vector spaces. The upper semicontinuity of
the solution set of these problems was established. Examples were provided
to explain some advantages of our results and to compare the solution sets
of the mentioned different problems. A direct application to corresponding
quasi-complementarity problems was also presented.
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